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Abstract

Calibration of distributed hydrologic models usually involves how to deal with the large
number of distributed parameters and optimization problems with multiple but often
conflicting objectives which arise in a natural fashion. This study presents a multiob-
jective sensitivity and optimization approach to handle these problems for a distributed5

hydrologic model MOBIDIC, which combines two sensitivity analysis techniques (Mor-
ris method and State Dependent Parameter method) with a multiobjective optimization
(MOO) approach ε-NSGAII. This approach was implemented to calibrate MOBIDIC
with its application to the Davidson watershed, North Carolina with three objective func-
tions, i.e., standardized root mean square error of logarithmic transformed discharge,10

water balance index, and mean absolute error of logarithmic transformed flow duration
curve, and its results were compared with those with a single objective optimization
(SOO) with the traditional Nelder–Mead Simplex algorithm used in MOBIDIC by taking
the objective function as the Euclidean norm of these three objectives. Results show:
(1) the two sensitivity analysis techniques are effective and efficient to determine the15

sensitive processes and insensitive parameters: surface runoff and evaporation are
very sensitive processes to all three objective functions, while groundwater recession
and soil hydraulic conductivity are not sensitive and were excluded in the optimization;
(2) both MOO and SOO lead to acceptable simulations, e.g., for MOO, average Nash–
Sutcliffe is 0.75 in the calibration period and 0.70 in the validation period; (3) evapora-20

tion and surface runoff shows similar importance to watershed water balance while the
contribution of baseflow can be ignored; (4) compared to SOO which was dependent of
initial starting location, MOO provides more insight on parameter sensitivity and con-
flicting characteristics of these objective functions. Multiobjective sensitivity analysis
and optimization provides an alternative way for future MOBIDIC modelling.25
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1 Introduction

With the development of information technology (e.g., high performance computing
cluster and remote sensing technology), there has been a prolific development of in-
tegrated, distributed and physically-based watershed models (e.g., MIKE-SHE, Refs-
gaard and Storm, 1995) over the past two decades, which are increasingly being used5

to support decisions about alternative management strategies in the areas of land use
change, climate change, water allocation, and pollution control. Though in principle pa-
rameters of distributed and physically based models should be assessable from catch-
ment data (in traditional conceptual rainfall–runoff models, parameters are obtained
through a calibration process), these models still need a parameter calibration process10

in practice due to scaling problems, experimental constraints, etc. (Beven and Binley,
1992; Gupta et al., 1998; Madsen, 2003). Problems, arising in calibrating distributed
hydrologic models, include how to handle large number of distributed parameters and
optimization problems with multiple but often conflicting objectives.

In the literature, to deal with large number of distributed model parameters, this is of-15

ten done by aggregating distributed parameters (e.g., Yang et al., 2007), or screening
out the unimportant parameters through a sensitivity analysis (e.g., Muleta and Nick-
low, 2005; Yang, 2011). Sensitivity analysis can be used to not only screen out the most
insensitive parameters, but also study the system behaviors identified by parameters
and their interactions, qualitatively or quantitatively. However, most of applications in20

environmental modelling are based on the one-at-a-time (OAT) local sensitivity anal-
ysis, which is “predicated on assumptions of model linearity which appear unjustified
in the cases reviewed” (Saltelli and Annoni, 2010), or simple linear regressions where
a lot of uncertainty are not fairly accounted for. The use of global sensitivity analy-
sis techniques is very crucial in distributed modelling. Only recently, global sensitivity25

analysis techniques started to appear in hydrologic modelling.
Although most hydrologic applications are based on the single objective calibra-

tion, model calibration with multiple and often conflicting objectives arises in a natural
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fashion in hydrologic modelling. This is not only due to the increasing availability of
multi-variable (e.g., flow, groundwater level, etc.) or multi-site measurements, but also
due to the intrinsic different system responses (e.g., peaks and baseflow in the flow
series). Instead of finding a single optimal solution in the single objective optimization
(SOO), the task in the multiobjective optimization (MOO) is to identify a set of optimal5

trade-off solutions (called a Pareto set) between conflicting objectives. In hydrology, the
traditional method to solve multiobjective problems is to form a single objective, e.g.,
by giving different weights to these multiple objectives or applying some transfer func-
tion. Over the past decade, several MOO algorithms approaches have been applied
to the conceptual rainfall–runoff models (e.g., Yapo et al., 1998; Gupta et al., 1998;10

Madsen, 2000; Boyle et al., 2000; Vrugt et al., 2003; Liu and Sun, 2010), and now
increasing applied to distributed hydrologic models (e.g., Madsen, 2003; Bekele and
Nicklow, 2007; Shafii and Smedt, 2009; MacLean et al., 2010). And there are some
papers (Tang et al., 2006; Wöhling et al., 2008) to comparatively study their strengths
with the application in hydrology. It is worth noting that the multiobjective calibration is15

different from statistical uncertainty analysis which is based on the concept (or similar
concept) of “equifinality” (see discussion in Gupta et al., 1998; Boyle et al., 2000).

This paper applies two sensitive analysis techniques (Morris method and State De-
pendent Parameter method) and ε-NSGAII in the multiobjective sensitive analysis and
calibration framework. This was implemented to calibrate a distributed hydrological20

model MOBIDIC with its application to the Davidson watershed, North Carolina. The
purpose is to study parameter sensitivity of the hydrologic model MOBIDIC and ex-
plore the capability of MOO in calibrating the MOBIDIC compared to the traditional
SOO used in MOBIDIC applications.

This paper is structured as follows: Sect. 2 gives a description of the MOBIDIC25

model; Sect. 3 introduces the approach in the multiobjective sensitivity analysis and
optimization; Sect. 4 gives a brief introduction of the study site, model setup, objective
selection, and sensitivity and calibration procedure; in Sect. 5, the results are presented

3508

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/3505/2014/hessd-11-3505-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/3505/2014/hessd-11-3505-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 3505–3539, 2014

Distributed
hydrologic model

MOBIDIC

J. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and discussed; and finally the main results are summarized and conclusions are drawn
in “conclusions” section.

2 Hydrologic model MOBIDIC

MOBIDIC (MOdello di Bilancio Idrologico DIstribuito e Continuo; Castelli et al., 2009;
Campo et al., 2006) is a distributed and raster-based hydrological balance model. MO-5

BIDIC simulates the energy and water balances on a cell basis within the watershed.
Figure 1 gives a schematic representation of MOBIDIC. The energy balance is ap-
proached by solving the heat diffusion equations in multiple layers in the soil–vegetation
system, while the water balance is simulated in a series of reservoirs (i.e., boxes in
Fig. 1) and fluxes between them.10

For each cell, water in the soil is simulated by

dWg

dt
= Inf −Sper −Qd −Sas

dWc

dt
= Sas −Et (1)

where Wg [L] and Wc [L] are the water contents in the soil gravitational storage and15

capillary storage, respectively, and Inf [LT−1], Sper [LT−1], Qd [LT−1], Et [LT−1], and Sas

[LT−1] are infiltration, percolation, interflow, evaporation, and adsorption from gravita-
tional to capillary storage, which are modeled through following equations:

Sper = γ ·Wg

Qd = β ·Wg20

Sas = κ · (1−Wc/Wcmax) (2)

Inf =

{[
P + (Qd +Qh +Rd)up

][
1−exp

(
−Ks

P+(Qd+Qh+Rd)up

)]
if Wg <Wgmax

0 otherwise
3509
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where γ, β and κ are percolation coefficient [T−1], interflow coefficient [T−1], and soil
adsorption coefficient [LT−1], respectively, P the precipitation [LT−1], Qh and Rd Horton
runoff and Dunne runoff, Ks the soil hydraulic conductivity [LT−1], Wgmax [L] and Wcmax
[L] the gravitational and capillary storage capacities.

Once the surface runoff (Qh and Rd) and baseflow are calculated, three different5

methods can be used for river routing, i.e., the lag method, the linear reservoir method,
Muskingum–Cunge method (Cunge, 1969). Muskingum–Cunge method was used in
this study.

MOBIDIC uses either a linear reservoir or the Dupuit approximation to simulate the
groundwater balance which relates the groundwater change to the percolation, water10

loss in aquifers and baseflow. In this case study, the linear reservoir method was used.
Although there are many distributed parameters in MOBIDIC, normally these dis-

tributed parameters are calibrated through the “aggregate” factors (e.g., the multiplier
for hydraulic conductivity) based on their initial estimations. And hereafter we use the
term “factor” (instead of “model parameter”) when we conduct the sensitivity analy-15

sis and optimization, to avoid the confusion with the term “model parameter” used in
model description. A factor can be a model parameter or a group of model parameters,
and in this paper it is a change to be applied to a group of model parameters. In MO-
BIDIC, normally nine factors (i.e., nine groups of parameters) need to be calibrated.
These factors, their explanations, and their corresponding model parameters are listed20

in Table 1.

3 Methodology

The procedure applied here consists of two-step analyses, i.e., a multiobjective sensi-
tivity analysis generally characterizing the basic hydrologic processes and single out
the most insensitive parameters, and a multiobjective calibration aiming at trade-offs25

between different objective functions.
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3.1 Sensitivity analysis techniques

Sensitivity analysis is to assess how variations in model out can be apportioned, qual-
itatively or quantitatively, to different sources of variations, and how the given model
depends upon the information fed into it (Saltelli et al., 2008). In the literature, a lot
of sensitivity analysis methods are introduced and applied, e.g., Yang (2011) applied5

and compared five different sensitivity analysis methods. Here we adopted an approach
which combines two global sensitivity analysis techniques, i.e., the Morris method (Mor-
ris, 1991) and SDP method (Ratto et al., 2007).

3.1.1 Morris method

Morris method is based on replicated and randomized one-factor-at-a-time design10

(Morris, 1991). For each factor Xi , Morris method uses two statistics, µi and σi , which
measure the degree of factor sensitivity, and the degree of nonlinearity or factor inter-
action, respectively. The higher µi is, the more important the factor Xi is to the model
output; and the higher σi is, the more nonlinear the factor Xi is to the model output or
more interactions with other factors (details refer to Morris, 1991; Campolongo et al.,15

2007). Morris method takes m · (n+1) model runs to estimate these two sensitivity in-
dices for each of n factors with sample size m. The advantage is it is efficient and
effective to screen out insensitive factors. Normally m takes values around 50. And ac-
cording to Saltelli et al. (2008), the sensitivity measure (µi ) is a good proxy for the total
effect (i.e., STi in Eq. (4) below), which is a robust measure in sensitivity analysis.20

3.1.2 State-Dependent Parameter method (SDP)

SDP (Ratto et al., 2007) is based on the ANOVA functional decomposition, which ap-
portions the model output uncertainty (100 %, as 1 in Eq. 3) to factors and different

3511
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levels of their interactions:

1 =
∑
i

Si +
∑
i

∑
j>i

Si j + . . .+S12...n (3)

where Si is the main effect of factor Xi representing the average output variance reduc-
tion that can be achieved when factor Xi is fixed, and Si j is the first-order interaction
between Xi and Xj , and so on. In ANOVA based sensitivity analysis, total effect (STi )5

is frequently used, which stands for the average output variance that would remain as
long as Xi stays unknown,

STi = Si +
∑
j 6=i

Si j + . . .+S12...n (4)

SDP method uses the emulation technique to approximate lower order sensitivity in-
dices in Eq. (3) (e.g., Si and Si j in this study) by ignoring the higher order sensitivity10

indices. And we define SDi = Si+
∑
j
Si j (referred to as “quasi total effect” later) as a sur-

rogate to the total effect. The advantage is that it can precisely estimate lower order
sensitivity indices at a lower computational cost (normally 500 model runs, which is
independent of number of factors). The disadvantage is that it cannot estimate higher
order sensitivity indices.15

Since these two methods are computationally efficient, these two methods are ap-
plied individually. And then, the sensitivity of each factor and its system behaviour will
be discussed, qualitatively by Morris method, and quantitatively by SDP method. And
then the most insensitive factors will be screened out and excluded in the calibration.

In the context of multiobjective analysis, sensitivity analysis includes: (1) to examine20

the sensitivity of each factor to different objective functions, qualitatively or quantita-
tively; (2) to single out the most sensitive factors and study the physical behaviours
of the system; (3) to exclude the most insensitive factors and therefore simplify the
process of calibration.
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3.2 Multiobjective calibration and ε-NSGAII

In the literature of hydrologic modelling, most applications are single objective based,
which aims at a single optimal solution. However, for example in flow calibration, there
is always a case that two solutions, one solution better simulates the peaks and poorly
simulates the baseflow while the other solution poorly simulates the peaks while better5

simulates the baseflow. These two solutions, which are called Pareto solutions, are in-
commensurable, i.e., better fitting of the peaks will lead to worse fitting of the baseflow,
and vice versa. This belongs to the domain of MOO, aiming at finding a set of optimal
solutions (Pareto solutions), instead of one single solution.

Generally a MOO problem can be formulated as follows:10

min F (X) = (f1(X), f2(X), ..., fi (X), ..., fk(X))

s.t. G(X) = (g1(X),g2(X), ...,gi (X), ...,gl (X)) (5)

Where X is an n-dimensional vector and in this study represents the model factors to
be calibrated, fi (X) i th objective function, and gi (X) i th constraint function.15

In the literature, there are many algorithms available to obtain the Pareto solutions,
e.g., NSGAII (Non-dominated Sorting Genetic Algorithm-II; Deb et al., 2002), SPEA2
(Strength Pareto Evolutionary Algorithm 2; Zitzler et al., 2001), MOSCEM-UA (Multi-
objective Shuffled Complex Evolution Metropolis; Vrugt et al., 2003), and ε-NSGAII
(Kollat and Reed, 2006), etc. In this study, we adopt ε-NSGAII, which is efficiency, re-20

liability, and ease-of-use. Its strengths have been comparatively studied in Kollot and
Read (2006) and Tang et al. (2006).
ε-NSGAII is an extension of the NSGAII (Deb et al., 2002), a second generation

of multiobjective evolution algorithm. The main characteristics of ε-NSGAII include: (i)
selection, crossover, and mutation processes as other genetic algorithm by mimicking25

the process of natural evolution, (ii) an efficient non-domination sorting scheme, (iii)
an elitist selection method that greatly aids in capturing Pareto front, (iv) ε-dominance
archiving, (v) adaptive population sizing, and (vi) automatic termination to minimize the
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need for extensive parameter calibration. More details refer to Kollat and Reed (2006).
As MOO is very time-consuming, we parallelized the source code and interfaced it with
MOBIDIC.

As a comparison, a single objective function is defined as 2-norm of the multiple
objectives F (X), which measures how close to the original point (theoretical optimum5

O):

sof = ‖F (X)‖2 =

√√√√ k∑
i=1

fi (X)2 (6)

And SOO was done with the classic Nelder–Mead algorithm (Nelder and Mead, 1965)
which is widely used in MOBIDIC applications.

To analyze the Pareto solution and also compare with the solution from SOO, except10

for traditional methods, the “Level diagrams” proposed by Blasco et al. (2008) was also
used. Compared to traditional methods, it can visualize high dimensional Pareto front
and synchronizes the objective and factor diagrams. The procedure and includes two
steps. In the first step, the vector of objectives (k-dimension) for each Pareto point is
mapped to a real number (one-dimension) according to the proximity to the theoretical15

optimum measured with a specific norm of objectives; and in the second step, these
norm values are plotted against the corresponding values of each objective or factor.
1-norm, 2-norm and ∞-norm are suggested. To compare with SOO, 2-norm was used.

4 Davidson watershed and objective selection

4.1 Davidson watershed20

The Davidson watershed, located in southwest mountain area of North Carolina, drains
an area of 105 km2 above the station “Davidson river near Brevard” (see Fig. 2). The
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elevation ranges from 645 m to 1820 ma.s.l. Based on the NLDAS climate data, the av-
erage annual precipitation is 1900 mm and varies from 1400 mm to 2500 mm, and daily
temperature changes from −19 ◦C to 26 ◦C. The average daily flow is about 3.68 m3 s−1.

Data used in MOBIDIC model include (i) Digital Elevation Model (DEM), (ii) soil data,
(iii) land cover data, (iv) climate data (precipitation, minimum and maximum tempera-5

ture, solar radiation, humidity and wind speed), and (v) flow data. 9 m DEM, land cover,
SSURGO soil data, one station (Davidson river near Brevard) of flow data are from
US Geological Survey, and hourly NLDAS climate data from National Aeronautics and
Space Administration (NASA). NLDAS integrates a large quantity of observation-based
and model reanalysis data to drive offline (not coupled to the atmosphere) land-surface10

models (LSMs), and executes at 1/8th-degree grid spacing over central North Amer-
ica, enabled by the Land Information System (LIS) (Kumar et al., 2006; Peters-Lidard
et al., 2007).

DEM is used to delineate the watershed and estimate the topographic parameters
and river system, Land cover for evaporation parameters, soil data for soil parameters,15

climate data is used to drive MOBIDIC, and flow data are used to calibrate the model
and assess model performance. The climate and flow data used in this study are from
1 January 1996 to 30 September 2006. As NLDAS only has hourly temperature daily
instead of hourly minimum and maximum temperature needed by MOBIDIC, we com-
piled the hourly climate data to daily data and run the model at a daily step. After20

MOBIDIC setup, the initial parameter values are listed in third column of Table 1.
We split the data into a warm-up period (from 1 January 1996 to 30 September

2000), a calibration period (from 1 October 2000 to 30 September 2003), and a valida-
tion period (from 1 October 2003 to 30 September 2006).

4.2 Objective function selection25

After setting up MOBIDIC in the Davidson watershed, three objective functions were
used in the multiobjective sensitivity analysis and optimization:
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(1) Standardized root mean square error between the logarithms of simulated and
observed outflows:

SRMSE =

√
1
N

N∑
i=1

(
log

(
Qobs

i

)
− log

(
Qsim

i

))2

√
1

N−1

N∑
i=1

(
log

(
Qobs

i

)
− logQ

)2

(7)

(2) Water Balance Index, calculated as the mean absolute error between the simulated
and observed flow accumulation curves:5

WBI =
1
N

N∑
i=1

∣∣∣Qobs
Ci −Qsim

Ci

∣∣∣ (8)

(3) Mean absolute error between the logarithms of simulated and observed flow dura-
tion curves

MARD =
1

100

N∑
i=1

∣∣∣log
(
Qobs

Pi

)
− log

(
Qsim

Pi

)∣∣∣ (9)

In Eqs. (7)–(9), Qobs
i and Qsim

i are observed and simulated flow series at time step i , N10

the data length, logQ the average of logarithmic transformed observed flows, Qobs
Ci and

Qsim
Ci i th observed and simulated accumulated flows, and Qobs

Pi and Qsim
Pi i th percentiles

of observed and simulated flow duration curves.
SRMSE (Eq. 7), WBI (Eq. 8), and MARD (Eq. 9) are measures of the closeness

between simulated and observed flow series, water balance, and closeness between15

simulated and observed flow frequencies, respectively. The smaller these measures
are, the better the simulation is, and the minima are (0, 0, 0) meaning a perfect match
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between the simulation and observation. It is worth noting that we use the logarithms of
the flows instead of flows to avoid overfitting flow peaks (Boyle et al., 2000; Shafii and
De Smedt, 2009). And for SRMSE, we have NS ≈ 1−SRMSE2 when N is large (e.g.,
> 100), where NS is the Nash–Sutcliffe coefficient (Nash and Sutcliffe, 1970), which is
widely used in hydrologic modelling.5

And accordingly, the single objective function here is the Euclidean norm (2-norm) of
SRMSE, WBI, and MARD:

sof =
√

SRMSE2 +WBI2 +MARD2 (10)

5 Result and discussion

5.1 Multiobjective sensitivity analysis10

Morris method and SDP method were applied individually to the initially selected factors
(in Table 1).

For Morris method, its convergences for three objective functions, monitored using
the method proposed in Yang (2011), were achieved around 700 ∼ 800 model simu-
lations. Figure 3 gives the sensitivity results for objective functions SRMSE, WBI, and15

MARD, respectively. In each plot, the horizontal axis (µ) denotes the degree of factor
sensitivity, and the vertical axis (σ) denotes the degree of factor nonlinearity or interac-
tion with other factors.

For SRMSE, the most sensitive parameters are group (pα, pγ, and pκ), followed by
pβ and rCH, while other parameters (especially rKs and rKf) are not so sensitive. This20

applies to the degree of the factor nonlinearity or interaction. The sensitivities of pα, pγ,
and pκ indicate the importance of their corresponding processes (i.e., surface runoff,
percolation, and adsorption which is related to evapotranspiration) to SRMSE, while
interflow (pβ) is less important and other processes/characteristics (e.g., groundwater
flow, rKf) are not important.25
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For WBI, the dominating parameter is pκ, followed by group (pα, pγ, pβ and rCH),
while other parameters (especially rKf and rWcmax) are not so sensitive. WBI measures
the water balance between observed and simulated flow series, and it is reasonable
that pκ which controls the water supply for evaporation is most sensitive while other
factors (pα, pγ, pβ and rCH) are sensitive mainly through interaction with this factor,5

as indicated by the high “σ”s of these factors.
For MARD, the results are nearly the same to SRMSE.
Figure 4 gives the sensitivity results based on SDP method for SRMSE, WBI, and

MARD, from top to bottom. In each plot, the grey and black bars are Si and SDi for
each factor.10

For SRMSE, as indicated by R2 in the legend, main effects (Si ) contribute to 58.7 %
of SRMSE uncertainty, and quasi total effects (SDi ) account for 83 % of SRMSE uncer-
tainty which is quite high, while other 17 % due to higher interactions are not explained.
Based on SDi (black bar), the most sensitive factors are pγ and pκ, followed by pα and
rCH, and then pβ and rWcmax while other factors are not sensitive. This result quantita-15

tively corroborates the result obtain from Morris method. The main effects (Si ) of (pγ,
pκ, and pα) are high (i.e., 0.17, 0.18 and 0.14), which suggests these factors should
be determined first in model calibration as they lead to the largest reduction in SRMSE
uncertainty. For each factor, the difference between the black bar and grey bar shows
the first order interaction with other factors. This interaction is very strong in pγ, pκ,20

pα, and rCH, and very weak in other factors.
For WBI, as indicated by R2 in the legend, the total main effects (Si ) contribute to

38.4 % of the WBI uncertainty, quasi total effects (SDi ) only account for 57.6 % of WBI
uncertainty, and 40 % due to higher interactions are not explained and can not be
ignored. However, by analyzing the result with that from Morris method (top right in25

Fig. 3), we still can get some valuable results: the dominating sensitive factor is pκ with
SDi 0.43 (which is same as Morris method), followed by pγ, pα, and rCH, while other
factors are not sensitive; the main effect of pκ is as high as 0.27, and it should be fixed
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in order to get the maximum reduction in WBI uncertainty; the first interaction is high in
pκ, pγ, and pα, not obvious in other factors.

Similar to the Morris results for SRMSE and MARD, the result of MARD is nearly the
same as SRMSE. The similar result for SRMSE and MARD shows similar characteristic
relationship between factors and the objective function. This is explainable: a good5

simulation measured by SRMSE will more likely result in a good measure of MARD,
and vice versa.

As aforementioned, in the context of multiobjective sensitivity analysis, sensitivity
analysis is to exclude the factors which are insensitive to all the objective functions
considered. Based on the analysis above, four most insensitive factors are rKs, rKf,10

rWcmax,and rWgmax. However, as shown in Fig. 4, rWcmax is more sensitive than other
three factors, and for objective function WBI, as higher order interactions are strong
based on SDP (i.e., explains around 40 % of model uncertainty), and evaporation is
the most sensitive process to water balance (as indicated by pκ and rCH) and rWcmax
is the only factor related to evaporation storage (Wc), therefore, we only exclude rKf,15

rKs, and rWgmax for calibration.

5.2 Multiobjective optimization

After sensitivity analysis, only six factors were involved in the calibration. MOO con-
verged with 482 Pareto front points after totally 22 000 model runs with the parallelized
ε-NSGAII, while SOO converged after 686 model runs with the classic Nelder–Mead20

algorithm. Apparently, ε-NSGAII took more model simulations than the Nelder–Mead
algorithm, but simulation time was compensated by the parallelized code running on
high performance clusters.

Figure 5 shows optimized non-dominant sets normalized within [0, 1] and the black
line is for the factor set with SOO. It is encouraging that except rWcmax, factor ranges25

decreased a lot. This corroborates the conclusion in the sensitivity analysis: pγ, pκ,
pβ, pα, and rCH are the most sensitive and identifiable factors to these three objec-
tive functions, while rWcmax is less sensitive and less identifiable. Several scattered
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values of pγ and dispersed rWgmax show that optimized factor sets are scattered in the
response surface rather than concentrated in a continuous region. And the factor set
with SOO is within the range of non-dominant sets.

Figure 6 shows Pareto solutions scattered in the three-dimensional space (top left),
and projections in two-dimensional subspaces with corresponding correlation coeffi-5

cients (r) in the calibration period, with the black dot in each plot denoting the solution
for SOO. Correlation coefficients are high and negative for SRMSE and WBI (−0.54),
and WBI and MARD (−0.74), and this indicates strong trade-off interactions along the
Pareto surface, i.e., better (lower) WBI will eventually result in worse (higher) SRMSE,
and vice versa. The correlation coefficient is low (0.13) between SRMSE and MARD,10

and it is close to 0 when these two variables approach to their minima regions (i.e.,
SRMSE < 0.53 and MARD < 0.09). Table 2 lists the statistics of these three objectives
associated with Pareto sets and the result of SOO. For Pareto sets, in the calibration
period, the average SRMSE is 0.49 ranging from 0.47 to 0.57, which corresponds to
the average NS 0.78 ranging from 0.67 to 0.78; the average WBI is 0.05 ranging from15

0.02 to 0.11; and the average MEAD is 0.08 ranging from 0.03 to 0.11. In the validation
period, the average SRMSE is 0.54 ranging from 0.51 to 0.62, which corresponds to
the average NS 0.70 ranging from 0.61 to 0.74; the average WBI is 0.05 ranging from
0.04 to 0.09; and the average MEAD is 0.10 ranging from 0.08 to 0.13. And for SOO,
SRMSE, WBI and MEAD are 0.48, 0.06 and 0.07 for the calibration period, and 0.57,20

0.06 and 0.10 for the validation, and accordingly the “NS”s are 0.77 and 0.67, respec-
tively. According to Moriasi et al. (2007) which suggests NS> 0.75 and WBI< 10 % as
excellent modelling of river discharge, all Pareto solutions with MOO and the solution
with SOO are close to “excellent” for both calibration and validation periods.

To better visualize Pareto sets and compare with the result of SOO, the level dia-25

grams are plotted in Fig. 7 by applying Euclidean norm (2-norm) to evaluate the dis-
tance of each Pareto point to the ideal origin (0,0,0) (ideal values for all three normal-
ized objectives are 0). In Fig. 7, top three plots are for three objectives and the rest for
optimized factors, and the black dot in each plot is the solution for SOO. In the level
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diagrams, each objective and each factor of a point (corresponding to a Pareto solu-
tion) is represented with the same 2-norm value for all the plots. Compared with MOO,
obviously, SOO was trapped in the local optima as seen in top-left plot, which means
optimization with Nelder–Mead algorithm was dependent of starting point. The 2-norm
has a close linear relationship with SRMSE due to values of SRMSE are 5 to 10 times5

of other two objective functions, and it does not have such relationship with other two
objectives. The scattering of objectives and factors makes it difficult in decision making
to select a single solution because there is not a clear trade-off solution (Blasco et al.,
2008). However, compared to SOO, the Pareto solutions from MOO can make decision
making easy as it can be converted with expert opinion or some utility function.10

Figures 8 and 9 show simulated and observed flow duration curves and time series
flows, respectively, with grey lines denoting the simulations with MOO and black lines
with SOO. Generally, all simulations match the observation well for both the duration
curve and time series flow for both calibration period and validation period. For the du-
ration curve, simulations from MOO show a wide range in the low flows with frequencies15

from 0.85 to 1.0, which reflects the insensitivity of groundwater process (discussed in
the sensitivity analysis, i.e., rKf is insensitive to these three objectives). Except for this,
there is a slight overestimation of flows, large flows during the calibration period with
frequencies from 0.2 to 0.1, and median to large flows during the validation period with
frequencies from 0.5 to 0.1. This might be due to the uncertainty in the reanalyzed cli-20

mate data. And the extreme flow with frequency around 0 is underestimated, and this
is because we chose the logarithm scale of the observed and simulated flows instead
of normal scale when computing objectives SRMSE and MARD. With SOO, the devia-
tion from the observed is larger. Similar conclusions can be drawn from the time series
simulations in Fig. 9, i.e., the wide ranges of low flow period, and underestimation of25

flow peaks. Other than this, generally all simulations can mimic the observations.
Figure 10 shows the time series of watershed average storages (soil storage ex-

pressed as soil saturation, and groundwater depth), and fluxes (evaporation, surface
runoff and baseflow) associated with MOO (shaded) and SOO (black line). With MOO,
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soil saturation varies from 0.2 to 1.0 and groundwater from 0 to 120 mm. The tem-
poral fluctuation of soil moisture is higher than groundwater, but lower than fluxes in
evaporation and surface runoff. And this is true for the solution with SOO except the
its ranges of soil saturation and groundwater (groundwater is very close to 0 mm). For
fluxes with MOO, evaporation and surface runoff have more temporal variation than5

baseflow, and their magnitudes are larger than baseflow. This applies to fluxes with
SOO, and its baseflow is close to 0. This can be confirmed by the De Finetti diagram in
Fig. 11: with MOO, the average contributions of evaporation, surface runoff, and based-
flow are 49.3, 46.1, and 4.8 %, respectively while the contribution of baseflow is very
insignificant. And the contribution of baseflow is almost 0 with SOO.10

6 Conclusion

This study presents a multiobjective sensitivity and optimization approach to calibrate
a distributed hydrologic model MOBIDIC with its application in the Davidson watershed
for three objective functions (i.e., SRMSE, WBI, and MAED). Results show:

1. The two sensitivity analysis techniques are effective and efficient to determine the15

sensitive processes and insensitive parameters: surface runoff and evaporation
are very sensitive processes to all three objective functions, while groundwater
recession and soil hydraulic conductivity are not sensitive and were excluded in
the optimization.

2. For SRMSE and MAED, though all the factors have almost same sensitivities, the20

non-dominance of Pareto set shows the trade-off between these two objectives in
the response surface.

3. Both MOO and SOO achieved acceptable results for both calibration period and
validation period, in terms of objective functions and visual match between simu-
lated and observed flows and flow duration curves. For example, with MOO, the25
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average NS is 0.75 ranging from 0.67 to 0.78 in the calibration and 0.70 ranging
from 0.61 to 0.74 in the validation period.

4. In the case study, evaporation and surface runoff shows similar importance to
watershed water balance while the contribution of baseflow can be ignored.

5. Compared to MOO with ε-NSGAII, the application of SOO with the Neld–Mead5

algorithm was dependent of initial starting point. Furthermore, the Pareto solu-
tion provides a better understanding of these conflicting objectives and relations
between objectives and parameters, and a better way in decision making.
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Table 1. Initial selected factors, initial estimation of the corresponding MOBIDIC parameter, and
factor ranges.

Factor Meaning of the given factor Initial estimation of
MOBIDIC parameter

Factor range

pγ Exponential changea on soil percolation
coefficient γ [s−1]

1.2×10−11 [−2, 9]

pκ Exponential change on soil adsorption
coefficient κ [s−1]

1.6×10−7 [−6, 5]

pβ Exponential change on interflow coeffi-
cient β [s−1]

2.5×10−6 [−7, 4]

pα Exponential change on surface storage
decay coefficient α [s−1]

3.3×10−7 [−6, 5]

rKs Multiplying changeb on soil hydraulic
conductivity [ms−1]

[5.0×10−6,8.9×10−5] [0.001, 100]

rWcmax Multiplying change on maximum storage
of the capillary reservoir [m]

[0.017, 0.165] [0.01, 5]

rWgmax Multiplying change on maximum storage
of the gravitational reservoir [m]

[0.107, 0.449] [0.01, 5]

rCH Multiplying change on bulk turbulent ex-
change coefficient for heat [–]

[0.010,0.018] [0.01, 5]

rKf Multiplying change on groundwater de-
cay coefficient [s−1]

1.0×10−7 [0.001, 5]

a Exponential change pX means the corresponding MOBIDIC parameter X will be changed according to
X = X0 ×exp(pX −1), where X0 is the initial estimation of X.
b Multiplying change rX means the corresponding MOBIDIC parameter X will be changed according to X = X0 × rX.
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Table 2. Statistics of three objective functions associated with multiobjective optimization and
single objective optimization.

Multiobjective optimization Single objective optimization
Calibration Validation Calibration Validation
Mean Min Max Mean Min Max

SRMSE 0.49 0.47 0.57 0.54 0.51 0.62 0.48 0.57
WBI 0.05 0.02 0.11 0.05 0.04 0.09 0.07 0.06
MAED 0.08 0.03 0.11 0.10 0.08 0.13 0.07 0.10
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Figure 1 A schematic representation of MOBIDIC. Boxes denote different water 

storages (gravitational storage Wg, capillary storage Wc, groundwater storage H, surface 

storage Ws, and river system), solid arrows fluxes (evaporation Et, precipitation P, 

infiltration Inf, adsorption Ad, percolation Pc, surface runoff R, interflow Qd, groundwater 

discharge Qg, and surface runoff and interflow from upper cells (R+Qd)up), dashed arrows 

different routings, and blue characters major model parameters.  
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Fig. 1. A schematic representation of MOBIDIC. Boxes denote different water storages (gravi-
tational storage Wg, capillary storage Wc, groundwater storage H , surface storage Ws, and river
system), solid arrows fluxes (evaporation Et, precipitation P , infiltration Inf, adsorption Ad, per-
colation Pc, surface runoff R, interflow Qd, groundwater discharge Qg, and surface runoff and
interflow from upper cells (R +Qd)up), dashed arrows different routings, and blue characters
major model parameters.
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Figure 2 The location of the Davidson watershed, North Carolina, with DEM map, 

river system (lines), and watershed outlet (the triangle point) 

 

 

Fig. 2. The location of Davidson watershed, North Carolina, with DEM map, river system (lines),
and watershed outlet (the triangle point).
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Figure 3 Multiobjective sensitivity analysis result based on the Morris method 

 

 

 

Fig. 3. Multiobjective sensitivity analysis result based on the Morris method.
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Figure 4 Multiobjective sensitivity analysis result based on the SDP method 

 

Fig. 4. Multiobjective sensitivity analysis result based on the SDP method.
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Figure 5 The normalized factor sets corresponding to the Pareto solutions (grey 

lines) with MOO and the solution with SOO (dark line) 

Fig. 5. The normalized factor sets associated with MOO (grey lines) and the solution with SOO
(dark line).
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Figure 6 The Pareto solutions in the three dimensional space (top left), and the 

projections in the two dimensional subspace (other plots), with MOO, and the black dot is 

the solution with SOO 
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Fig. 6. The Pareto solutions in the three dimensional space (top left), and the projections in the
two dimensional subspace (other plots), with MOO, and the black dot is the solution with SOO.
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Figure 7 2-norm level diagrams representation of the Pareto sets with MOO, and 
the solution with SOO (black dot) 

Fig. 7. 2-norm level diagrams representation of the Pareto sets with MOO, and the solution with
SOO (black dot).
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Figure 8 Flow duration curve for observed (dotted line), and simulated with MOO 

(grey) and SOO (solid line) 

 
 
 

Fig. 8. Flow duration curve for observed (dotted line), and simulated with MOO (grey) and SOO
(solid line).
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Figure 9 Observed flows (dotted) and simulated flows with MOO (grey) and SOO 
(black line) for the calibration period (top) and validation period (bottom) 
 
  

Fig. 9. Observed flows (dotted) and simulated flows with MOO (grey) and SOO (black line) for
the calibration period (top) and validation period (bottom).
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Figure 10 Time series of watershed average storages (soil water storage expressed as 
soil saturation, and groundwater depth), and fluxes (evaporation, surface runoff, and 
baseflow) with MOO (grey) and SOO (black line). For SOO, the groundwater storage 
and baseflow are close to 0 and hardly seen. 
 
  

Fig. 10. Time series of watershed average storages (soil water storage expressed as soil sat-
uration, and groundwater depth), and fluxes (evaporation, surface runoff, and baseflow) with
MOO (grey) and SOO (black line). For SOO, the groundwater storage and baseflow are close
to 0 and hardly seen.
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Figure 11 De Finetti diagram (Ternary plot) of Evaporation, Surface runoff, and 
Baseflow with MOO (grey) and SOO (black star) 
 
 
 

Fig. 11. De Finetti diagram (Ternary plot) of Evaporation, Surface runoff, and Baseflow with
MOO (grey) and SOO (black star).
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